Jet finding Algorithms at Tevatron

B.Andrieu (LPNHE, Paris)

On behalf of the

collaboration

Outline:

- Introduction
- The Ideal Jet Algorithm
- Cone Jet Algorithms: RunII/RunI, D0/CDF
- $\triangleright k_{\perp}$ Jet Algorithm
- Summary

Jets: from parton to detector level

$$\boldsymbol{\sigma}^{p\overline{p} \to jets} = \int d\Omega \sum_{ij} f_{i/\overline{p}}(x_{\overline{p}}, \mu_{\overline{p}}^2) f_{j/p}(x_p, \mu_p^2) d\boldsymbol{\sigma}^{ij \to kl}$$

 $d\sigma^{ij\to kl}$ partonic cross section $\propto \alpha_S^2(\mu_R^2)$ $f_{i/\overline{p}}(x_{\overline{p}},\mu_{\overline{p}}^2)(f_{j/p}(x_p,\mu_p^2))$ PDF of parton i(j) in p(p) $\mu_{\overline{p}}(\mu_p)$ factorisation scales in p(p)

 μ_R renormalisation scale

 $\mathbb{QCD} \Rightarrow$ quarks and gluons at high p_T produce jets (Sterman & Weinberg, 1977)

Non-perturbative processes not predictable \rightarrow QCD inspired phenomenology

QCD partons \rightarrow jets of hadrons \rightarrow detector signals

Jets: from parton to detector level

Quark and gluon jets (identified to partons) can be compared to detector jets, if jet algorithms respect collinear and infrared safety (Sterman&Weinberg, 1977)

High E_T jets \Leftrightarrow "Hard" QCD

(non-perturbative effects & scale uncertainty reduced)

- ⇒ Direct insight into parton dynamics
- ⇒ Precise tests of perturbative QCD predictions
- \Rightarrow Measure α_s , constrain proton PDFs, ...
- ⇒ Search for new physics

Low E_T jets \Leftrightarrow "Soft" QCD

(non-perturbative effects & scale uncertainty important)

- ⇒ Test phenomenological models (underlying event, fragmentation)
- ⇒ Study detailed jet structure (jet shapes)

Jet definition

Two things need to be done to define a jet:

- Associate "close" to each other "particles"
 - → Clustering (Jet Algorithm)
 - "particles" can be: partons (analytical calculations or parton showers MC)
 - "hadrons" = final state particles (MC particles or charged particles in trackers)
 - **towers** (or cells or preclusters or any local energy deposits)
 - "close"? → Distance independent of the distance from interaction point
 - invariant under longitudinal boosts
 - $\rightarrow \Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ or $\sqrt{\Delta Y^2 + \Delta \phi^2}$ (preferred in RunII) for Cone Algorithm
 - \rightarrow relative p_T for k_{\perp} algorithm
- Calculate jet 4-momentum from "particles" 4-momenta
 - **→** Recombination scheme
 - invariant under longitudinal boosts
 - \rightarrow Snowmass scheme (RunI): E_T-weighted recombination scheme in (η,ϕ)
 - → covariant or E-scheme (preferred for RunII): 4-momenta addition
 - used at the end of clustering but also during clustering process (not necessarily the same, still preferrable)

The ideal jet algorithm for $p\bar{p}$

Compare jets at the parton, hadron and detector level

⇒ Jet algorithms should ensure

General

- infrared and collinear safety
- invariance under longitudinal boosts
- fully specified and straightforward to implement
- same algorithm at the parton, hadron and detector level

Theory

- boundary stability (kinematic limit of inclusive jet cross section at $E_T = \sqrt{s/2}$)
- factorisation (universal parton densities)

Experiment

- independence of detector detailed geometry and granularity
- minimal sensitivity to non-perturbative processes and multiple scatterings at high luminosity
- minimization of resolution smearing/angle bias
- reliable calibration
- maximal reconstruction efficiency (find all jets) vs minimal CPU time
- replicate Runl cross sections while avoiding theoretical problems

Run I Cone Algorithm

- **Based on Snowmass algorithm**: E_{T} -weighted recombination scheme in (η,ϕ)
- Preclustering (D0, similar algorithm for CDF) Note: Tower segmentation in (η, φ) space: D0 \rightarrow 0.1 \times 0.1, CDF \rightarrow 0.11 \times 0.26
 - start from seeds (= hadronic towers with $p_T > 1$ GeV ordered in decreasing p_T)
 - cluster (and remove) all contiguous calorimeter towers around seed in a R= 0.3 cone

Clustering

- start from preclusters (ordered in decreasing E_T)
- proto-jet candidate = all particles within R_{cone} of the precluster axis in (η,ϕ) space CDF: keep towers of the original precluster through all iterations (ratcheting)
- proto-jet direction compared before/after recombination → iterate until it is stable
- Merging/Splitting (treat overlapping proto-jets)
 - $E_{1 \cap 2} > f$. Min(E_1, E_2) \rightarrow Merge jets
 - $E_{1 \cap 2} < f$. Min(E_1, E_2) \rightarrow Split jets = assign each particle to its closest jet
 - D0: f = 50 %, use only clusters with $E_T > 8$ GeV CDF: f = 75 %
- Final calculation of jet variables (modified Snowmass scheme)
 - scalar addition of E_T (D0) or E (CDF) of particles to determine jet E_T or E
 - addition of 3-momenta of particles to determine jet direction, then (η,φ)
 Note: this procedure is not Lorentz invariant for boosts along beam axis
 CDF: E_T = E sin(θ)

Why new algorithms for Run II?

Run I Cone algorithms have many drawbacks

- Different in D0 and CDF
- Not infrared and collinear safe due to the use of seeds (collinear safety ensured at sufficiently large E_T : $E_T > 20$ GeV with P_T^{min} (seed) = 1 GeV in D0)
- Preclustering difficult to match at parton or hadron level
- CDF ratcheting not modelled in theory
- Need to introduce a new parameter (R_{sep}) in jet algorithm at parton level to match theory predictions to measurements (S.D. Ellis et al., PRL69, 3615 (1992))
- Not invariant under boosts along beam axis
- → 2 new Cone Algorithms proposed for RunII (G.C. Blazey et al., "RunII Jet Physics", hep-ex/0005012)
- Seedless Cone Algorithm
- RunII (= Improved Legacy or Midpoint) Cone Algorithm
- \rightarrow Use k_{\perp} algorithm (already used in RunI)

Seedless Cone Algorithm

Not really "seedless"

- → Use enough seeds (all towers) to find all stable cones
- First step:
 - form cone around seed, recalculate cone direction (Snowmass recombination)
 - stop processing seed if the cone centroid is outside of the seed tower
 CDF: use tower size X 1.1 to avoid boundary problems
- Secund step similar to Run I Cone algorithm:
 - use the cones formed in first step (pre-protojets) as seeds
 - form cone around seed and recalculate cone direction (E-scheme = 4-momentum addition)
 - iterate until cone direction after/before recombination is stable
- Streamlined (faster) option
 - Stop iteration in second step if the cone centroid is outside of the seed tower
 → Only miss low E_T protojets or stable directions within the same tower
- → Infrared and collinear safe
- → Probably close to Ideal for a Cone algorithm
- → Even the streamlined version is very computational intensive
- ⇒ Use an approximation of Seedless Algorithm → RunII Cone

RunII Cone Algorithm (hep-ex/0005012)

How to build a valid approximation of the seedless algorithm?

- QCD calculation at fixed order N
 → only 2^N −1 possible positions for stable cones (p_i, p_i+p_j, p_i+p_j+p_k,...)
- Data: consider seeds used in RunI Cone algorithms as partons
 → in addition to seeds, use 'midpoints' i.e. p_i+p_j, p_i+p_j+p_k,...
- only need to consider seeds all within a distance $\Delta R < 2R_{cone}$
- only use midpoints between proto-jets (reduce computing time)
- otherwise algorithm similar to Runl

Other specifications of the suggested RunII cone Algorithm

- E-scheme recombination = 4-momenta addition
- use true rapidity Y instead of pseudo-rapidity η in ΔR
- use all towers as seeds (p_T > 1 GeV)
- splitting/merging: p_T ordered, f = 50 %

D0 Run II Cone Algorithm: Preclustering

- Simple Cone Algorithm
- Start from particles with highest p_T and p_T > 500 MeV
- Precluster formed from all particles within a cone of r = 0.3 (r = 0.2) for Cone jets with R ≥ 0.5 (R = 0.3) (≠Runl: only neighbouring cells)
- Remove particles as soon as they belong to a precluster
- No cone drifting
- Precluster 4-momentum calculated using the E-scheme

D0 Run II Cone Algorithm: Clustering

Use all preclusters as seeds (p_T ordered), except those close to already found protojets $(\Delta R \text{ (precluster, protojet)} < 0.5 R_{cone})$

> Cone drifting until cone axis coincides with jet direction

- Abort drifting if:
 - $p_T < 0.5 \text{ Jet } p_T^{min}$
 - # Iterations = 50 (avoids infinite cycles)
- Remove duplicates
- Repeat same clustering for midpoints* except:
 - No condition on close protojet
 - No removal of duplicates

- calculated using p_T -weighted mean

D0 Run II Cone Algorithm: Merge/Split

The Smaller Search Cone Algorithm

- Jets might be missed by RunII Cone Algorithm (S.D. Ellis et al., hep-ph/0111434)
 → low p_T jets
 - too close to high p_T jet to form a stable cone (cone will drift towards high p_T jet)
 - too far away from high p_⊤ jet to be part of the high p_⊤ jet stable cone
- proposed solution
 - remove stability requirement of cone
 - run cone algorithm with smaller cone radius to limit cone drifting $(R_{search} = R_{cone} / \sqrt{2})$
 - form cone jets of radius R_{cone} around protojets found with radius R_{search}

Remarks

- Problem of lost jets seen by CDF, not seen by D0
 - → A physics or an experimental problem?
- Proposed solution not satisfactory in terms of elegance and simplicity
- ⇒ D0 prefers using RunII Cone without Smaller Search Cone

k_{\perp} Algorithm

Description of inclusive $k\perp$ **algorithm** (Ellis&Soper, PRD48, 3160, (1993))

- p_T ordered list of particles \rightarrow form the list of $d_i = (p_T^i)^2$
- calculate for all pairs of particles, $d_{ij} = Min((p_T^i)^2, (p_T^j)^2) \Delta R/D$
- find the minimum of all d_i and d_i;
 - if it is a d_i, form a jet candidate with particle i and remove i from the list
 - if not, combine i and j according to the E-scheme
 - use combined particle i + j as a new particle in next iteration
 - need to reorder list at each iteration → computing time ∞ O(N³) (N particles)
- proceed until the list of preclusters is exhausted

Remarks

- originally proposed for e⁺e⁻ colliders, then adapted to hadron colliders (S. Catani et al., NPB406,187 (1993))
- universal factorisation of initial-state collinear singularities
- infrared safe: soft partons are combined first with harder partons → result stable when energy of soft partons -> 0
- collinear safe: two collinear partons are combined first in the original parton
- no issue with merging/splitting

D0 Run II k_1 Algorithm

- Use E -scheme for recombination
- Use p_T ordered list of preclusters (geometrical 2x2 preclustering)
- Remove preclusters with E < 0
- Either merge pairs of preclusters which are closest to each other in relative p_T or form a jet with each isolated low p_T precluster
- When all preclusters have been associated to a jet, calculate 4-momenta of all jets
- Apply a p_T^{min} cut on jets $(p_T > 8 \text{ GeV})$

Summary

- RunII (Midpoint) Cone Algorithm clear improvement over RunI Algorithm
- Many problems or questions still remain open (not exhaustive list):
 - D0 uses only RunII Cone (Midpoint) Algorithm (no smaller search cone)
 - CDF still uses JetClu (Runl) Cone Algorithm + Smaller Search Cone Algorithm
 - D0 implementation does not fully follow RunII Cone recommendations
 - $p_T^{min} / 2$ cut on proto-jets candidates
 - preclustering
 - seeds too close to already found protojets not used
 - influence of parameters for precluster formation?
 - usefulness of a p_T cut on proto-jets before merging/splitting at high luminosity?
 - procedure chosen for merging/splitting optimal?
 - origin of the difference D0 vs CDF for lost jets problem?
- In contrast, k_{\perp} algorithm is conceptually simpler, theoretically well-behaved, although less intuitive. It also needs studies, as for the RunII Cone Algorithm (jet masses, sensitivity to experimental effects, ...).
 - \Rightarrow However, shouldn't we put more effort on using k_{\perp} algorithm and less on reproducing results obtained with RunI algorithms? (personal statement)

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.